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Abstract

Passive acoustic monitoring (PAM) that uses devices like automatic audio recorders has become a fundamental tool in conserving
and managing natural ecosystems. However, this practice generates a large volume of unsupervised audio data, and extracting valid
information for environmental monitoring is a significant challenge. It is then critically necessary to use methods that leverage
Deep Learning techniques for automating species detection. BirdNET is a model trained for bird identification that has succeeded
in many study systems, especially in North America or Europe, but it results inadequate for other regions due to insufficient training
and its bias on focal sounds rather than entire soundscapes. Another added problem for species detection is that many audios
recorded in PAM programs are empty of sounds of species of interest or these sounds overlap. This study presents a multi-stage
process for automatically identifying bird vocalizations that includes first a YOLOv8-based Bird Song Detector, and second, a
fine-tuned BirdNET for species classification at a local scale with enhanced detection accuracy. As a study case, we applied this
Bird Song Detector to audio recordings collected in Doñana National Park (SW Spain) as a part of the BIRDeep project. We
annotated 461 minutes of audio data from three main habitats across nine different locations within Doñana, resulting in 3749
annotations representing 38 different classes. Mel spectrograms were employed as graphical representations of bird audio data,
facilitating the application of image processing methods. Several detectors were trained in different experiments, which included
data augmentation and hyperparameter exploration to improve the model’s robustness. The model giving the best results included
the creation of synthetic background audios with data augmentation and the use of an environmental sound library. This proposed
pipeline using the Bird Song Detector as a preliminary step, significantly improves BirdNET detections by increasing True Positives
by approximately 281.97%, and reducing False Negatives by about 62.03%, thus demonstrating a novel and effective approach for
bird species identification. Our findings underscore the importance of adapting general-purpose tools to address specific challenges
in biodiversity monitoring. The experimental results show that fine-tuning Deep Learning models that account for the unique
characteristics of specific ecological contexts can substantially enhance the accuracy and efficiency of PAM’s efforts.

Keywords: Computer Vision, Convolutional Neural Networks, Deep Learning, Ecoacoustics, Passive Acoustic Monitoring

1. Introduction

Natural environments face significant challenges in terms of
conservation and monitoring due to habitat loss, the effects of
climate change, and anthropogenic pressure. In response to this
crisis, biodiversity monitoring and species-interaction assess-
ments have become essential to understanding environmental
impacts and developing conservation strategies. Effective bio-
diversity monitoring is fundamental for conservation efforts, as
it provides the data necessary to make informed decisions, but it
is challenging to get the data necessary to make those informed
decisions.

In this regard, identifying and tracking bird species are cru-
cial, as birds serve as indicators of ecosystem health (1). Al-
though various automatic monitoring technologies, such as
cameras and audio recorders, are already in use, efficiently
managing and analyzing the large volumes of data generated
by these devices remains challenging. One effective technol-
ogy is Passive Acoustic Monitoring (PAM), which uses audio

recorders to continuously capture sounds in an environment.
PAM is particularly valuable for monitoring biodiversity as it
can operate in remote and inaccessible areas, providing con-
tinuous data without disturbing the habitat (2). By leveraging
PAM, the monitoring scale can be expanded significantly, al-
lowing for more comprehensive and detailed ecological studies
(3).

In recent years, the cost of recording devices has reduced,
leading to an increase in the collection of this type of data in
the field of ecology (4; 5; 6). However, in many cases, these
data are not adequately labelled or classified, making analysis
difficult and limiting their utility for decision-making (7). The
primary objective is to address the challenge of efficiently man-
aging large data volumes for extracting relevant information for
biodiversity conservation by applying Machine Learning tech-
niques. This approach aims to automate data labelling process
and improve data analysis efficiency in the context of environ-
mental monitoring. By doing so, human resources can be freed
for more complex tasks, allowing for a better understanding of
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ecological interactions.
The remainder of the paper is organized as follows. First a

Section of Related Works in 2 is presented. After presenting
the dataset creation in Section 3, the methodology, including
the integration of YOLOv8 and BirdNET for bird vocalization
detection and species classification and detailing the develop-
ment and implementation of the Bird Song Detector and the
multi-stage pipeline approach, are presented in Section 4. In
Section 5, we present the experimental results obtained from
applying the proposed methodology in the context of Doñana
National Park. Section 6 analyzes and discusses the implica-
tions of the results, addressing the challenges and opportunities
identified. Finally, Section 7 provides the conclusions drawn
from this study and outlines future research directions.

2. Related Works

Historically, early bird vocalization recognition methods re-
lied on basic sound feature analysis, using techniques such as
Random Forests for classification. These methods focused on
extracting specific audio features, such as frequency, pitch, and
duration, to create a feature set that could be used for classifi-
cation (8). While effective to a certain extent, these approaches
were limited by their reliance on manually crafted features and
often struggled with complex and overlapping sounds.

Recent advancements in Deep Learning techniques for bird
vocalization recognition have emerged as valuable tools, en-
abling precise and continuous monitoring of bird populations
(9). One of the most popular models of bird vocalization
recognition is BirdNET (10), which has proved to be success-
ful in many cases (11; 12; 13). The testing of these models
has been conducted in environments for which the base model
was especially well trained, mainly from Northen America and
central-northern Europe. This means that the model was ini-
tially trained on a dataset that closely resembles the conditions
of the test environment, thereby increasing its predictive ac-
curacy. Nevertheless, this also implies that models trained on
global datasets performance may degrade when applied to unfa-
miliar environments or conditions due to variability in local bird
vocalizations and unique environmental conditions (14; 15).
BirdNET’s performance is suboptimal in real-world contexts,
including overlapping bird songs and different acoustic back-
grounds (11) as False Positives (FPs) often arise from other vo-
calizing animals, anthropogenic sounds or weather conditions
(16; 10; 17).

Indeed, foundational models like BirdNET, which are trained
on global datasets, often struggle to recognize species for which
they were not trained on. In theory, it is possible to retrain an
existing model in order to add missing species, what is known
as fine-tuning (18). Alternatives such as Perch (19) and custom
models based on BirdNET with fine-tuning for local conditions
have been developed. These fine-tuned models aim to improve
accuracy by accounting for the unique characteristics of local
bird populations (15). However, this task is quite challenging as
it requires Machine Learning expertise similar to having to train
models from scratch. As a result, the successful implementation

of Machine Learning tools to accelerate the annotation process
in ecoacoustics has been achieved by only a small number of
organizations (20).

To address these limitations, we propose a multi-stage
pipeline approach that combines a generalizable Bird Song De-
tector based on YOLOv8 (You Only Look Once v8) (21) with a
project-specific classifier (Figure 1) inspired by methodologies
used in camera trap projects (14; 22). The Bird Song Detector
has been trained to detect and temporally locate bird vocaliza-
tions, even from species not encountered during training.

As a study case, we apply this Bird Song Detector to the
PAM program developed by the BIRDeep project at Doñana
National Park (SW Spain) (23), in order to facilitate the autom-
atization of bird species identification in the local soundscapes
of Doñana. By using a Bird Song Detector as a preliminary
step, we can ensure the presence of bird songs in the audio seg-
ments.

The added value of this pipeline lies in its ability to isolate
relevant segments of audio that contain bird vocalizations be-
fore applying a more computationally intensive species classi-
fier. This process not only reduces the number of non-bird seg-
ments incorrectly identified as bird vocalizations but also sim-
plifies the fine-tuning of the species classifier, as the model is
optimized to work with segments that are already confirmed to
contain bird sounds. This is more than just a simple fine-tuning
of an existing model; by separating the detection and classifi-
cation stages, we minimize background noise interference and
focus the classifier’s resources on the most relevant audio data,
leading to improved overall system performance. The gener-
alization ability of the Bird Song Detector also ensures that it
can identify bird vocalizations even from species not present
in the training set, making this approach robust for real-world
applications with diverse species compositions.

3. Dataset

In this section, we provide a detailed description of the
dataset employed in our study. We begin by discussing the field
site and acoustic data collection process, followed by the data
preparation steps necessary for transforming the raw audio into
a format suitable for analysis. Finally, we describe the data dis-
tribution strategy.

3.1. Field study site and PAM design

Soundscapes were registered at Doñana National Park
(SW Spain). This area corresponds to the marshes of the
Guadalquivir delta and it is one of the most important wet-
lands of Southern Europe, where millions of migrating birds
stopover and winter every year (24; 25). Doñana has three main
habitats, which are differentiated by their flooding regime and
vegetation: scrublands, marshland and the ecotone or transition
among them. The deployment design of the BIRDeep project
included nine AudioMoth recorders (26) that were distributed
among these three habitats: two in the marshland, three in the
ecotone and four in the scrubland, differentiating high and low
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Figure 1: Pipeline for the development of our Bird Song Detector. The process was divided into three main stages: (1) Preprocess: This stage involved deploying
recording devices in natural environments to collect audio data. The collected data was then annotated by experts to identify bird vocalizations, followed by splitting
the dataset into training, validation, and test sets. (2) Bird Song Detector: In this stage, a Bird Song Detector was trained using the annotated dataset. This detector
identified segments containing bird vocalizations from the audio recordings. The trained model was then used to detect bird songs in the audio data, producing
segments that contained potential bird vocalizations. (3) BirdNET Classifier: The final stage involved fine-tuning the BirdNET model using the original annotated
segments. The model was then validated and tested with the segments identified by the Bird Song Detector. This fine-tuned BirdNET model accurately classified
the bird species present in each segment.

scrubland (see Figure 2). AudioMoths are low-cost automatic
audio recording devices with open-source hardware. They con-
tinuously recorded 1 minute of audio every 10 minutes. Con-
figuration parameters of deployed AudioMoth included a sam-
pling rate of 32 kHz, a medium gain, and a filter band focused
on bird frequencies (0.6-16.0 kHz).

Figure 2: Distribution of the nine passive acoustic monitoring devices (Au-
dioMoths) deployed in Doñana National Park across its three main habitats:
marshland, scrubland (high or low) and ecotone.

3.2. Acoustic data annotation

A total of 461 minutes of audio data were annotated by two of
the co-authors of this work with ornithological expertise. They

used Audacity software to listen to the recordings and anno-
tate the spectrograms (27). When faced with uncertainties, they
referred to field censuses to ensure the accuracy of their anno-
tations.

Field census provided a valuable reference by listing the
species observed in the area during the recording period. These
field census are conducted periodically due to the associated
costs and provide real data regarding diversity, which can be
used to cross-check the audio labels. This information reduced
the ambiguity in the spectrograms and audio, allowing for more
precise annotations. By cross-referencing the audio data with
field observations, the annotators could confirm species pres-
ence and improve the reliability of their annotations at the same
time that it helped to narrow down the number of potential
species, making it easier to identify the species present in the
recordings.

Annotation efforts prioritized periods of high bird activity,
mainly at morning chorus, to maximize the number of bird vo-
calizations (28). Annotations consisted of bounding boxes with
the minimum and maximum frequency and start time and end
time of each bird vocalization in each spectrogram. In total, and
after a standardization process of the annotations, there were
3749 annotations belonging to the 38 different classes shown in
Figure 3. In addition to the species-specific classes we have dis-
tinguished other general classes: Genus (when the species was
unknown but the genus of the species was distinguished), a gen-
eral Bird class, and a No Audio class for recordings that contain
only soundscape without bird songs. As the Bird Song Detec-
tor only has two classes, we reclassified labels as Bird or No
bird for recordings that include only soundscape background
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without biotic sound or whether biotic sounds were non-avian.
It is important to note that the dataset (29) exhibits class im-

balance, with varying frequencies of annotations across differ-
ent bird species classes. Additionally, the dataset contains in-
herent challenges related to environmental noise, which will be
addressed later when discussing the dataset construction in con-
junction with complementary datasets.

3.3. Data Preparation

Audio data was transformed into Mel spectrograms for train-
ing a Deep Learning model based on image processing tech-
niques, i.e. Convolutional Neural Networks (30). A Mel spec-
trogram is a variant of spectrogram where the frequency axis
is transformed to a Mel scale, which mimics human auditory
perception more closely than the linear scale. This graphical
representation of audio data displays how the signal’s energy
is distributed across different frequencies over time, making it
suitable for image processing techniques (31).

Figure 4 shows an example of a Mel spectrogram from the
Doñana dataset (29), including annotations for temporal win-
dows and the complete frequency spectrum. Although annota-
tions for specific frequency windows were available, the study
was simplified by considering the full frequency spectrum due
to the limited size of the dataset.

3.4. Data Distribution

The dataset used in this study (29) was divided into training,
validation, and test sets, aiming for an 80-10-10 proportion per
species (32). However, maintaining independence and avoid-
ing correlation among subsets to prevent overestimation dur-
ing model evaluation (33) proved challenging as some audios
were multilabeled, containing vocalizations from more than one
species. This made it difficult to strictly adhere to the desired
80-10-10 ratio. To mitigate these issues, we prioritized ensur-
ing that no audio file appeared in more than one subset, even if
it contained multiple species, to maintain the independence of
the sets. The final distribution, as depicted in Figure 5, reflects
these adjustments, balancing the dataset as much as possible
while considering these constraints.

The dataset is available at a Hugging Face repository (29)
with this split and the best data augmentations achieved during
experimentation as shown in Section 5.2.

4. Methods

In this section we delve into the model development, high-
lighting the methodologies and techniques used to build and
fine-tune our models. At the end we outline our approach for
model evaluation to ensure robust performance assessment.

4.1. Bird-Song Detector Model Development

To detect bird vocalizations within audio recordings, we de-
veloped a Bird Song Detector using YOLOv8 (21). YOLOv8

is a state-of-the-art real-time object detection model that bal-
ances high accuracy and speed, making it ideal for processing
large datasets in ecological studies. Unlike its predecessors,
YOLOv8 introduces several enhancements, including improved
feature extraction through convolutional layers and optimized
bounding box regression, which enhance its ability to detect
fine-grained details. The model architecture consists of multi-
ple convolutional layers followed by fully connected layers that
predict bounding boxes, objectness scores, and class probabili-
ties for detected objects (21).

Given the nature of our audio data, which contains a mix of
bird sounds and background noise, YOLOv8’s precise detection
capabilities are essential for distinguishing relevant events. The
model divides each input image into a grid and predicts bound-
ing boxes that indicate the presence of these events, along with
a confidence score for each prediction. In our case study, the
input images are mel spectrograms, and the relevant events are
bird vocalizations represented as sonograms in the images. This
approach allows for efficient identification of bird vocalizations
even in complex acoustic environments.

We chose YOLOv8 because it has been in development for a
longer period, providing proven stability and reliability. At the
start of our experiments, YOLOv9 and YOLOv10 were either
not yet available or were very recent releases, lacking the ex-
tensive validation that YOLOv8 has undergone. Therefore, we
opted for YOLOv8, which is widely used in many applications
due to its robust performance, offering a good balance of com-
putational efficiency and accuracy. Initial experiments demon-
strated that the small-sized YOLOv8 model (yolov8s.pt) was
particularly effective in maintaining high detection accuracy
while minimizing computational load (34).

To further optimize YOLOv8 for our study, we fine-tuned
the model using annotated mel spectrograms of bird vocaliza-
tions. This fine-tuning involved incorporating data augmenta-
tion techniques, such as adding noise and shifting frequencies,
to enhance the model’s robustness to variations in the dataset
(29), as well as adding additional samples from an external
dataset (35).

These improvements demonstrate YOLOv8’s effectiveness
in accurately detecting bird vocalizations within large, diverse
datasets, providing a strong foundation for subsequent species
classification using fine-tuned BirdNET models.

4.2. Bird-Song Classifier Model Development

Following this, BirdNET V2.4 was fine-tuned to create a
classifier adapted to the ecological context of Doñana. Bird-
NET is a Deep Learning model specifically designed to classify
bird species using audio inputs. It segments audio recordings
into 3-second clips, transforms the audio into Mel spectrogram
images, and performs classification using a deep Convolutional
Neural Network (36).

The fine-tuning process involved appending additional train-
ing data specific to Doñana’s bird species to the BirdNET
model. This augmentation aimed to address the bias and en-
hance the model’s performance in the region. This approach
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Figure 3: Distribution of the 38 annotated classes in the dataset.

Figure 4: An example of a Mel spectrogram from the Doñana dataset with
annotations (i.e. blue and lime green rectangles) for temporal windows and the
complete frequency spectrum for the annotated bird vocalizations.

helps the model generalize better to variations in species vocal-
izations and acoustic environments present in Doñana, thereby
improving its accuracy in identifying local bird species (37; 38).

BirdNET V2.4 covers frequencies from 0 Hz to 15 kHz.
The model supports a global species selection, encompassing
6,522 classes (including 10 non-event classes), making it suit-

able for the identification of diverse bird species all over the
world. Non-event classes refer to categories that represent
sounds or signals that are not related to bird vocalizations, such
as background noise, human-made sounds, or other environ-
mental noises.

Technical specifications of BirdNET V2.4 include (36):

• 48 kHz sampling rate, with automatic upsampling and
downsampling capabilities to handle artifacts from lower
sampling rates.

• Two Mel spectrograms are computed as input for the Con-
volutional Neural Network:

– First spectrogram: fmin = 0 Hz, fmax = 3000 Hz,
nfft = 2048, hop size = 278, 96 mel bins.

– Second spectrogram: fmin = 500 Hz, fmax = 15
kHz, nfft = 1024, hop size = 280, 96 mel bins.

Both spectrograms are resized to a final resolution of 96 ×
511 pixels after raw audio normalization between -1 and
1, incorporating non-linear magnitude scaling (39).
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Figure 5: Distribution of the dataset per species across training, validation, and test sets.

• BirdNET V2.4 uses an EfficientNetB0-like backbone with
a final embedding size of 1024 for feature extraction and
classification.

Despite its capabilities, BirdNET’s original training datasets
from public repositories like Xeno-canto (40) and Macaulay
Library (41) may exhibit biases and limitations for detailed
analyses of some local assemblages. These repositories pre-
dominantly contain recordings of focal bird songs, which iso-
late the bird’s vocalization from its acoustic environment. This
approach results in cleaner audio data that lacks overlapping
sounds from multiple species and natural ambient backgrounds.
Moreover, these datasets are spatially and temporally biased,
often collected from regions where the libraries are heavily
used, such as North America. Consequently, species com-
mon in these regions are overrepresented compared to those in
other geographical locations with different ecological dynam-
ics. These factors can lead to challenges when deploying mod-
els trained on such datasets in diverse ecological contexts at
regional or local scales.

4.3. Predictions

The predictions of the Bird Song Detector were obtained in
the form of bounding boxes, which are given as the image coor-
dinates of the center of the bounding box (xcenter and ycenter), the
width, and the height of the bounding box in the YOLOv8 out-
put format. These coordinates are then transformed into tempo-
ral coordinates, using the xcenter value and width to calculate the
start time and end time of the predicted bird song segment. This
transformation is performed using the following equations:

xcenter d = xcenter ×W (1)

w d = w ×W (2)

start sec =
(
xcenter d −

w d
2

)
×

60
W

(3)

end sec =
(
xcenter d +

w d
2

)
×

60
W

(4)

where W is the width of the spectrogram image used as input
for the Bird Song Detector model. The variables xcenter and
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w represent normalized coordinates and width of the bounding
box, respectively. To interpret these predictions in real-world
temporal coordinates, they are deserialized using xcenter d and
w d, which are the denormalized counterparts of xcenter and w,
scaled by W. And, start sec and end sec denote the starting and
ending seconds of the bounding box segment.

5. Experiments and Results

In this section, we delve into the practical evaluations and
training processes involved in our study. We first present the
evaluation of BirdNET as a bird vocalization detector. We then
discuss further evaluations conducted after fine-tuning Bird-
NET with data from Doñana. Finally, we explore the train-
ing process of the Bird Song Detector, highlighting the impact
of incorporating background noise and the adjustments made
to improve the model’s performance. We also present the out-
comes of our study on the development and fine-tuning of a
Bird Song Detector and classifier tailored for the Doñana eco-
logical context. We begin by examining the performance of the
Bird Song Detector. Next, we evaluate the classification of bird
species using the fine-tuned BirdNET model.

To evaluate the performance of BirdNET as a Bird Song De-
tector without species classification, confusion matrices were
generated. First, evaluation was done with a full list of species
from Doñana that included 412 classes, using a minimum In-
tersection over Union (IoU) of 0.2 and a confidence score of
0.6 (Figure 6a). Second, a refined evaluation was done us-
ing a shorter list of 337 species extracted from expert anno-
tations. This list was created by reviewing all species recorded
in Doñana during historical censuses, incorporating references
from existing literature (42; 43), even if a species had only been
observed once. However, to focus on more reliable detections,
only the most common species were retained, along with those
that, while not frequent, are known to potentially appear in the
region (Figure 6b). Both evaluations used the same IoU and
confidence score parameters. IoU measures the overlap be-
tween predicted bounding boxes and ground truth annotations,
ensuring that the predictions are spatially accurate and aligned
with actual bird vocalizations.

5.1. Evaluation of BirdNET after fine-tuning

Further evaluations were conducted after fine-tuning Bird-
NET with data from Doñana. Initially, the confidence score
was set at 0.6 (11; 12). This score is derived from the output of
the final layer of BirdNET, where logits are processed through a
sigmoid activation function with a specified sensitivity (in this
case, sensitivity = 1). The resulting values are converted into
confidence scores, ranging from 0 to 1, indicating the proba-
bility that a prediction is correct. Figure 7a shows the results
obtained at this confidence score threshold. However, this set-
ting did not show a significant improvement.

Subsequently, the confidence score was lowered to 0.1 to ex-
plore its impact on performance, as depicted in Figure 7b. De-
spite the improvements in TP observed at the 0.1 confidence

(a) Full species list

(b) Expert species list

Figure 6: Comparison of confusion matrices for BirdNET without fine-tuning
using different species lists: (a) BirdNET evaluated with the full list of species
from Doñana, and (b) BirdNET evaluated with the species list from expert an-
notations. In both cases, BirdNET is evaluated as a detector, i.e., without con-
sidering whether the species is correctly identified, only if it corresponds to an
actual annotated bird song.

score threshold, it is notable that the number of FPs and False
Negatives (FNs) increased considerably.

5.2. Bird Song Detector Training

To select the Bird Song Detector, multiple models were
trained and their performance was evaluated using the mean
Average Precision (mAP) metric at an Intersection over Union
(IoU) threshold of 50% (mAP50; (44)). Initial experiments,
represented by the purple lines in Figure 8 (Base, Hyperpa-
rameter Exploration V1, Hyperparameter Exploration V2, Aug-
mentedBG V1 and AugmentedBG V2), showed suboptimal per-
formance, particularly due to a high number of FPs.

Given the complexity and small size of the dataset (29), the
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(a) Fine-tuned at 0.6 confidence score

(b) Fine-tuned at 0.1 confidence score

Figure 7: Comparison of confusion matrices for BirdNET fine-tuned with
Doñana data at different confidence scores: (a) BirdNET fine-tuned at a con-
fidence score of 0.6, showing not much improvement compared to the base
model, and (b) BirdNET fine-tuned at a confidence score of 0.1, where the de-
tection rate improves significantly, but the number of FPs also increases.

bounding boxes, which were initially designed to delimit both
the frequency spectrum and the time window, were simplified.
This simplification involved taking the full frequency spectrum
into account and only delimiting the temporal window (repre-
sented by the yellow line FullFrequencies in Figure 8). This
approach aimed to reduce the complexity of the task for the
model, given the limited amount of data available.

To address the issue of the FPs, the ESC-50 dataset (45),
which is a large collection of 50 environmental sound classes,
was introduced as background noise (negative samples). Bird-
related classes were removed from this dataset to prevent confu-
sion. However, when this dataset was fully included, the model
primarily learned to recognize background sounds and failed to
detect bird songs effectively (green line (AllESC50) in Figure
8).

Subsequently, the ESC-50 dataset was reduced to comprise
only 25% of the total training data. This adjustment led to
significant improvements in the model’s performance (orange
line (Best Model) in Figure 8). This balanced approach allowed
the model to better differentiate between bird songs and back-
ground noises, improving detection accuracy while minimizing
FPs.

The various model configurations employed during the ex-
perimentation are summarized in Table 1, which also presents
the performance metrics for each configuration. These config-
urations include different background augmentation techniques
and utilizations of the ESC50 dataset. The Best Model, which
employed synthetic background augmentation of noise and in-
tensity changes and a reduced ESC50 dataset, achieved one of
the highest mAP50 scores of 0.29, along with balanced preci-
sion and recall. Other configurations, such as AllESC50, dis-
played lower performance metrics. On the other hand, the Full
Frequencies model without the ESC50 dataset had the best per-
formance during training with a mAP50 score of 0.305. This
highlights the importance of specific augmentation strategies
and dataset choices in optimizing detection accuracy.

5.3. Bird Song Detector Evaluation

To evaluate the performance of the Bird Song Detector,the
confidence scores of the detector were converted to logit scores
to eliminate linearity introduced by the activation function (12).

The conversion from confidence scores to logit scores is
based on the logistic function:

logit(p) = log
(

p
1 − p

)
(5)

where p represents the confidence score of the detector’s pre-
diction. This transformation helps to interpret the confidence
scores probabilistically, providing a more nuanced understand-
ing of the detector’s performance characteristics.

We evaluated the Bird Song Detector using different proba-
bility thresholds (40%, 60%, 80% and 95%) to find the optimal
balance between maximizing True Positive (TP) and minimiz-
ing False Negatives. This optimization process involved ana-
lyzing the trade-off between increasing TP detection (i.e., cap-
turing more bird vocalizations) and the rise in FP or FN errors,
as higher thresholds tend to reduce the number of detections,
but with fewer FPs. After evaluating these trade-offs, we deter-
mined that the 60% threshold provided the best balance: it min-
imized the loss of TPs while keeping the FN rate at an accept-
able level. This threshold was selected as it offers a reasonable
compromise between the model’s confidence in detecting bird
vocalizations and its practical ability to avoid missing signifi-
cant events. Further, this threshold aligns with the performance
metrics relevant to real-time applications, where both detection
accuracy and speed are critical factors (see conclusions, Section
5.4).
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Figure 8: Mean Average Precision at 50% Intersection over Union (mAP50) during training for different experiments. Initial models (purple lines) showed high
False Positive (FP) rates. The inclusion of ESC-50 data (orange lines) improved model performance significantly.

Name Background Augmentation Frequency Spectrum mAP50 Precision RecallSynthetic Background Augmentation ESC50 Dataset
BestModel Add Noise + Intensity Change Reduced Full Spectrum 0.29 0.412 0.308
AllESC50 Add Noise + Intensity Change Full Full Spectrum 0.082 0.142 0.201
FullFrequencies Add Noise + Intensity Change - Full Spectrum 0.305 0.399 0.302
AugmentedBG V2 Add Noise + Intensity Change - Range Bounded 0.142 0.291 0.163
AugmentedBG V1 Add Noise - Range Bounded 0.136 0.232 0.17
Hyperparameter Exploration V2 - - Range Bounded 0.137 0.272 0.172
Hyperparameter Exploration V1 - - Range Bounded 0.134 0.258 0.172
Base - - Range Bounded 0.138 0.275 0.174

Table 1: Experimental results and configurations of the Bird Song Detector. The ‘-’ symbol indicates that no synthetic augmentation or dataset was applied in that
experiment.

5.4. Selection of confidence score threshold for the Bird Song
Detector

Table 2 summarizes the different values obtained for various
detection probabilities for the Best Model chosen after experi-
mentation (see Section 5) in our data and case study, including
their respective logit scores, confidence scores, and TP losses.

As illustrated in Figure 9, the 60% probability threshold cor-
responds to a logit score of -1.77 and a confidence score of 0.15,
with a TP loss of 22.08%. This threshold is strategically cho-
sen to balance detection accuracy with the practical limitations
of the model. In Figure 9 each black dot (with some trans-
parency so overlapping can be seen clearer) represents a de-
tection made by the Bird Song Detector, with the confidence
score transformed into a logit score on the X-axis. If a dot has
a Y-axis value of 0, it means the detection was incorrect (i.e.,
it did not correspond to a bird vocalization). Conversely, a Y-

axis value of 1 indicates that the detection was correct, based on
the ground truth annotations provided by experts in our dataset.
The blue line represents the logistic regression model fitted to
these data points. This line allows us to estimate the probability
of a correct prediction for any given logit score, which can then
be transformed back into a confidence score. The orange lines
in the figure highlight the intersection of this 60% threshold
with the blue logistic regression line, showing the correspond-
ing logit score, which is approximately -1.79. When trans-
formed back into a confidence score, this results in a threshold
of 0.14.

Lower thresholds, such as 40%, result in a 0% loss of TPs
but occur before the logistic regression model’s effects begin to
improve performance significantly (logit = -2.75, confidence =
0.06; Table 2). At this threshold, the model fails to utilize the
logistic regression adjustments effectively, as evidenced by the
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Probability Threshold Logit Score Confidence Score TP Loss (%)
40% -2.75 0.06 0.00
60% -1.77 0.15 22.08
80% -0.58 0.36 74.35
95% 1.30 0.79 99.03

Table 2: Comparison of different probability thresholds for detection with their respective logit scores, confidence scores, and TP losses.

Figure 9: Logistic Regression Model with a 60% probability threshold for cor-
rect prediction.

extremely low confidence score.
On the other hand, higher thresholds, like 80% and 95%, lead

to excessive losses of TPs (74.35% and 99.03%, respectively).
These thresholds result in an impractical trade-off, where the
reduction in FPs comes at the cost of almost complete loss of
the TPs (which need to have the high probability threshold to be
retained), significantly degrading the detector’s performance.

In this case and for our case study the 60% threshold is high
enough to ensure that the logistic regression model’s adjust-
ments are actively enhancing detection performance, while also
preserving a manageable amount of TPs. This threshold ensures
the model remains both reliable and practical for detecting bird
songs, thereby offering an optimal balance between confidence
and detection accuracy.

5.5. Bird Vocalization Detection Comparison

To further illustrate the improvements, we compared the
averaged results of BirdNET with the same confidence score
threshold of 0.6 (Figures 6a, 6b and 7a) to our Bird Song De-
tector (Figure 11) which will be selected and tested in the next
section of Results (see Section 5).

Next, we compared the fine-tuned BirdNET results with a
low confidence score threshold of 0.1 (Figure 7b) to our Bird
Song Detector (Figure 11).

The percentage improvements in TPs, FNs, FPs were cal-
culated based on changes observed between both methods and
were calculated using the following general formula:

Percentage Change =
(

New Value − Old Value
Old Value

)
× 100 (6)

Where New Value refers to the value obtained from our Bird
Song Detector and Old Value refers to the value obtained from
BirdNET with the specific confidence score threshold.

An increase in TPs indicates an improvement in detection
accuracy, as more bird vocalizations are correctly identified.
A decrease in FNs is also a sign of improved performance, as
fewer bird vocalizations are missed by the system. Conversely,
a decrease in FPs represents a reduction in erroneous detec-
tions of non-bird sounds. For all metrics, positive percentage
changes in TPs and negative changes in FN and FP signify im-
provements, while negative changes in TPs or positive changes
in FNs and FPs indicate a decline in performance.

When evaluating percentage changes in the results, it is im-
portant to consider them in absolute terms. A large percentage
increase or decrease might appear significant at first glance, but
its actual impact depends on the scale of the values involved.
For instance, changes from small baseline values can result in
high percentage variations, even if the absolute difference is rel-
atively minor. Conversely, changes in metrics with larger abso-
lute values might show smaller percentage shifts but represent
a more substantial impact on overall performance. Therefore,
it is crucial to interpret these percentages within the context of
the absolute figures to avoid misinterpreting the true extent of
the changes.

5.6. Bird Song Detector Election

To further investigate the performance of the top models, lo-
gistic regression curves were plotted for Best Model and Full
Frequencies for Validation data and a confidence score thresh-
old of 0.15 was chosen.

For Full Frequencies (Figure 10a), the probability of cor-
rect prediction increases gradually with the prediction score.
The curve appears more linear and less steep, suggesting that
the model’s predictions are less confident but more consistent
across the range of scores. This linearity indicates that Full
Frequencies provides a moderate level of certainty in its pre-
dictions, reflecting a balanced but somewhat cautious approach
to identifying bird songs. The gradual increase in probability
demonstrates a steady improvement in prediction accuracy as
the logit score rises.

In contrast, the Best Model (Figure 10b) exhibits a logis-
tic regression curve where the probability of correct prediction
increases more rapidly with the prediction score, indicating a
steeper and more pronounced curve. This steepness suggests
that Best Model makes more confident predictions, with higher
scores correlating strongly with correct predictions. The rapid
ascent of the curve means that as the logit score increases, the
model quickly becomes more certain about its predictions. This
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behavior implies that Best Model is better at distinguishing be-
tween correct and incorrect predictions, offering higher confi-
dence in its detections.

(a) Full Frequencies

(b) Best Model

Figure 10: Logistic Regression Curves for the two best models (a) Full Fre-
quencies and (b) Best Model.

Given the steeper slope of the logistic regression curve for
Best Model, it can be inferred that this model is more ef-
fective at identifying bird songs accurately. Despite having
slightly fewer total predictions compared to Full Frequencies,
Best Model demonstrates superior confidence and accuracy in
its predictions. This enhanced performance can be attributed
to its specific augmentation strategy, which involves synthetic
background augmentation combined with noise and intensity
changes on a reduced ESC50 dataset. These techniques likely
contribute to the model’s ability to make more decisive predic-
tions.

5.7. Bird Song Detector Performance

Using the confidence threshold of 0.15 obtained with the lo-
gistic regression, we executed the Bird Song Detector on the
test dataset. The resulting binary confusion matrix for these
detections is shown in Figure 11. This matrix shows the effec-
tiveness of the detector in identifying temporal windows with

bird songs and shows the improvement in detecting bird songs
compared to previous confusion matrices.

Figure 11: Binary confusion matrix for the Bird Song Detector on the test
dataset with a confidence threshold of 0.15.

Using BirdNET as a detector, including the fine-tuned model,
resulted in 80% of the positive samples being FPs in almost
all experiments. When the confidence score of the fine-tuned
model was lowered, the number of FNs decreased to 30%.
However, this adjustment also led to a substantial increase in
the number of FPs. Nearly 50% of the detected positives (Bird
Songs) were false, representing background noise rather than
actual Bird Songs. In contrast, our custom Bird Song Detector
showed significantly better performance. It missed only 20% of
the actual Bird Songs, resulting in minimal loss, and less than
1% of all predicted positive samples were FPs. This demon-
strates the effectiveness of our detector in accurately identifying
bird songs while minimizing false detections.

To further illustrate the performance of the detector, Figure
12 presents an example of the detector’s predictions on a Mel
spectrogram. The predictions are highly accurate and corre-
spond to the annotated spectrogram segments.

Figure 12: Predictions made by the Bird Song Detector on a Mel spectrogram.
The predictions are highly accurate, corresponding to the annotated spectro-
gram segments in Figure 4.
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5.8. Bird Song Detector vs BirdNET as a Bird Vocalization De-
tector

The comparison of the different models as bird vocalization
detectors in Calculations (see Section 5.5) highlight a signif-
icant enhancement in TP and FN, with TP increasing by ap-
proximately 282% and FN decreasing by about 62%. However,
there is a notable increase in FP, worsening by approximately
439%. While the FPs show a significant increase of approx-
imately 439%, it is important to put this figure into context.
The actual values we are comparing are 1.67 and 9, which are
relatively small numbers, especially when considering the total
duration of 200-300 minutes of audio data in the test dataset.
In this timeframe, there could potentially be an infinite number
of incorrect detections. However, in the case of BirdNET, only
an average of 1.67 incorrect detections were made, and for our
Bird Song Detector, this number was 9. Therefore, even though
the percentage increase seems high, the actual impact on the
overall performance of the detector is minimal. This demon-
strates the effectiveness of our Bird Song Detector in minimiz-
ing false detections while accurately identifying bird songs.

The comparison of the Bird Song Detector and BirdNET
fine-tuned with a low confidence score threshold shows that,
while lowering the confidence score in BirdNET, our Bird Song
Detector reduces the number of FN by approximately 44%, and
outperforms the FP metric by reducing them about 95%. In
contrast, the TP of our Bird Song Detector decreases by ap-
proximately 23%.

5.9. Bird Species Classification

With the temporal windows containing bird songs identi-
fied and extracted, these segments were then processed by the
fine-tuned BirdNET model. The improved detection rates from
the fine-tuned model allowed us to compute an species-specific
confusion matrix. Figure 13 presents the species-specific con-
fusion matrix obtained for the test segments obtained from
the Bird Song Detector and classified by BirdNET fine tuned.
This confusion matrix highlights the model’s varying perfor-
mance across different bird species even when BirdNET was
fine tuned.

This approach minimizes effort and time since the temporal
windows and cropped audio are already provided by the Bird
Song Detector. In addition, BirdNET also provides a prelim-
inary species classification. To ensure the accuracy and relia-
bility of the species classification, even when BirdNET’s confi-
dence score is low, the identified segments can be reviewed by
expert ornithologists.

6. Discussion

The results of our case study demonstrate the feasibility and
effectiveness of using a combination of a custom Bird Song De-
tector and a fine-tuned BirdNET for bird identification. The ap-
plication of YOLOv8 (21), a state-of-the-art detection model,
allowed us to accurately identify specific temporal windows
where bird songs occurred, detecting not only the presence of

bird vocalizations but also precisely locating them within the
audio recordings.

BirdNET, capable of identifying species within 3-second
windows, faces challenges in accurately pinpointing the exact
duration of bird vocalizations (11; 12). What is more, accord-
ing to the original BirdNET’s paper (10), the model achieved a
mean average precision of 0.791 for single-species recordings,
an F0.5 score of 0.414 for annotated soundscapes, and an aver-
age correlation of 0.251 with hotspot observations (areas with a
high diversity of bird species). These results suggest that Bird-
NET performs inadequately when applied to real-world scenar-
ios, such as accurately detecting bird species in diverse and dy-
namic environments (11).

BirdNET assigns confidence scores to its predictions. If a
high confidence score threshold is set, the recall is good, but
the sensitivity is very low. With a high confidence score, a lot
of FNs are obtained, and a lot of bird vocalizations are lost.
On the other side, lowering the confidence score results in too
many FPs (segments without bird vocalizations) (12). However,
by applying the Bird Song Detector first, we can ensure that the
audio segments contain bird vocalizations, allowing us to lower
the confidence score in BirdNET without increasing the FPs, as
the initial detector filters out non-bird sounds.

Using BirdNET as a detector, including the fine-tuned model,
resulted in about 80% of the positive predictions being FNs
in almost all experiments. When the confidence score of the
fine-tuned BirdNET model was lowered, the number of FN de-
creased to about 30%. However, this adjustment also led to
a substantial increase in the number of FPs. Nearly 50% of
the detected positives (bird vocalizations) were FP, represent-
ing background noise rather than actual bird songs (46). In
contrast, the two-step process we employed, consisting of our
custom Bird Song Detector followed by the fine-tuned Bird-
NET, showed significantly better performance. The Bird Song
Detector effectively filtered out non-bird sounds, reducing the
impact of background noise. As a result, the fine-tuned Bird-
NET worked with cleaner data, missing only 20% of the actual
bird vocalizations, with less than 1% of all predicted positive
samples being FPs. This demonstrates the effectiveness of our
two-step approach in accurately identifying bird songs while
minimizing false detections.

These findings emphasize the importance of using a high
confidence score threshold with BirdNET to ensure a balance
between detection accuracy and the minimization of FPs. How-
ever, our custom Bird Song Detector still outperforms BirdNET
by effectively reducing FNs and maintaining a manageable FP
rate and gives the possibility of applying BirdNET with a lower
confidence score without having a high amount of FP and FN
as it effectivily filters the segments that potencially have a bird
vocalization.

For our Bird Song Detector, the logistic regression transfor-
mation of the confidence scores to logits provides a more nu-
anced thresholding approach, reducing the number of FNs and
enhancing overall detection performance. The impact of the
confidence threshold on detection performance was significant,
it was possible to balance sensitivity and recall effectively.
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Figure 13: Species-specific normalized by rows confusion matrix for the fine-tuned BirdNET on predicted segments in the test dataset with the Bird Song Detector.

The Bird Song Detector included various abiotic and other
animal sounds as background noise. Integrating these sounds
into the training data enables the detector to generalize effec-
tively, allowing it to detect bird vocalizations even for species
it was not specifically trained on (14). By incorporating noises
such as environmental sounds and other animal vocalizations

into the training process, the detector becomes more robust and
less prone to FPs. This approach helps mitigate instances where
sounds from other animals like frogs or insects might be mis-
classified as bird vocalizations due to their overlap and common
occurrence in natural environments (47). Overall, the results
shown in Table 1 provide valuable insights into how different
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factors influence the performance of the Bird Song Detector,
guiding future improvements for enhanced bird song identifica-
tion.

Reviewing segments identified as bird songs but not con-
firmed by experts often revealed anthropogenic noises such as
short fence hits. This highlights the complexity of accurately
identifying bird vocalizations and underscores the importance
of expert verification, especially in scenarios involving ambigu-
ous sounds or background noises.

The fine-tuning of BirdNET for the Doñana ecological con-
text improved the classification accuracy of bird species, ad-
dressing the specific acoustic environment and species com-
position of the area. BirdNET’s built-in oversampling tech-
niques were supplemented with data augmentation techniques
like Mixup to mitigate class imbalance, where some species
were underrepresented. Mixup involves linearly interpolating
pairs of spectrogram images and their corresponding labels to
create new training samples.

However, performance varied across different species, high-
lighting the influence of data availability and quality on model
performance even after applying data augmentation techniques.
Species with more abundant and diverse training data exhib-
ited better classification results, underscoring the need for bal-
anced and comprehensive datasets. Given that BirdNET’s clas-
sification accuracy is currently the limiting factor in the overall
performance of the system, future efforts should primarily fo-
cus on improving the fine-tuning and training of BirdNET. En-
hancing the model’s ability to handle underrepresented species
and fine-tuning it further to the specific ecological context of
Doñana will likely yield the most significant improvements in
the pipeline’s overall accuracy.

The varying performance among different species is likely
due to the disproportionate amount of data available for each
species in the training dataset. Different species may require
distinct confidence thresholds even after fine-tuning (11; 12).
This suggests that adaptive thresholding, where thresholds are
dynamically adjusted based on species or context, could further
improve classification accuracy.

Despite advances, the classifier still faces challenges in accu-
rately identifying certain species. Expert review remains crucial
to verify and refine classifications, especially for species with
less robust data representation. The involvement of ornitholo-
gists ensures the reliability of the model’s outputs and provides
valuable feedback for further refinement (46).

Overall, the combination of the Bird Song Detector and
the fine-tuned BirdNET for species classification has shown
promising results. The proposed pipeline effectively identifies
bird songs and provides a preliminary species-specific identi-
fication, with the flexibility to incorporate expert reviews for
low-confidence detections, ensuring high accuracy and reliabil-
ity in monitoring bird species in the Doñana region.

This work not only advances Deep Learning-based bird vo-
calization detection techniques but also underscores the impor-
tance of adapting these models to specific local contexts. The
results demonstrate significant improvements in detection ac-

curacy, paving the way for broader applications in ecological
monitoring and conservation efforts.

7. Conclusions

In this section, we summarize the main findings and implica-
tions of our study on bird vocalization identification. We dis-
cuss the improvements in detection and classification accuracy,
highlight the importance of species-specific considerations, and
outline the continuous efforts needed to enhance model per-
formance. Additionally, we explore the broader impact of our
work on ecological monitoring and conservation, and propose
future research directions to further refine and expand our ap-
proach.

This study presents a novel approach to bird vocalization
identification through the integration of a custom Bird Song
Detector with a fine-tuned BirdNET model. Our research fo-
cuses on enhancing the accuracy and efficiency of bird song
detection and classification within specific ecological contexts,
such as Doñana National Park, a biodiversity hotspot that re-
quires detailed monitoring of avian species. By combining a
YOLOv8-based Bird Song Detector with BirdNET, we aimed
to overcome challenges associated with background noise and
the misclassification of non-bird sounds. This approach allows
for more precise identification of bird vocalizations, reducing
the impact of irrelevant acoustic events and improving overall
model performance.

The key advantage of our pipeline is its significant reduction
of FPs and FNs compared to standalone BirdNET models. In a
real-world application, our Bird Song Detector reduced FNs by
approximately 62% while increasing TPs by 282% compared
to a BirdNET-only approach. Although there was a 439% in-
crease in FPs, this rise occurred from a very low baseline (from
1.67 to 9 FPs), making the overall increase in FPs minimal.
Furthermore, when compared to a low-confidence fine-tuned
BirdNET model, our Bird Song Detector achieved a 44% re-
duction in FNs and a 95% reduction in FPs, while maintaining
only a modest 23% decrease in TPs. This demonstrates the ef-
fectiveness of our system in distinguishing bird sounds from
background noise.

Despite the advances, some challenges remain in accurately
identifying species with limited training data. Our findings em-
phasize the ongoing need for expert verification in refining clas-
sifications, especially for ambiguous sounds or species with
fewer training samples. This expert validation will be crucial
for improving the accuracy of species identification, particu-
larly in complex soundscapes with overlapping vocalizations.

The practical implications of this research for ecological
monitoring and conservation are significant. The integration of
Deep Learning models allows for the cost-effective and scalable
monitoring of bird populations, which is essential for tracking
species trends and identifying critical habitats.

Looking forward, we aim to explore the potential benefits of
newer YOLO models, such as YOLOv9 and YOLOv10, which
were released after our initial experiments. These models could
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potentially enhance the detection capabilities of our pipeline,
leading to further improvements in performance. Additionally,
we are developing real-time detection systems to enable con-
tinuous monitoring of bird populations. This will be comple-
mented by automated tools that assist ornithologists in review-
ing low-confidence detections, streamlining the validation pro-
cess.

Another long-term goal is to develop a foundational
Bird Song Detector model using extensive libraries such as
Macaulay and XenoCanto, as well as other datasets that include
realistic scenarios with noise and various species. This founda-
tional model could then be fine-tuned with specific data from
projects like BirdNET, allowing for a more generalized pipeline
that can be applied across various ecological contexts. Such a
model would significantly enhance the scalability and adapt-
ability of our approach, making it applicable to a wide range of
ecosystems for global biodiversity monitoring.

In our case study, the Bird Song Detector demonstrated re-
markable improvements, with True Positives increasing by ap-
proximately 282% and False Negatives decreasing by 62%
compared with different BirdNET-only models. Although FPs
increased by 439%, this increase was minimal, rising from just
a medium of 1.67 to 9 FP detections. These results highlight
the effectiveness of our pipeline in improving bird vocalization
detection accuracy while minimizing erroneous detections, pro-
viding a powerful tool for ecological monitoring.

Ultimately, these efforts aim to create a robust and versatile
bird vocalization detection system that can be deployed across
diverse ecological contexts, thereby broadening the applicabil-
ity and impact of our research in ecological monitoring and con-
servation.
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